A new technique for solving Fredholm integro-differential equations using the reproducing kernel method
author
Abstract:
This paper is concerned with a technique for solving Fredholm integro-dierentialequations in the reproducing kernel Hilbert space. In contrast with the conventionalreproducing kernel method, the Gram-Schmidt process is omitted hereand satisfactory results are obtained. The analytical solution is represented inthe form of series. An iterative method is given to obtain the approximate solution.The convergence analysis is established theoretically. The applicabilityof the iterative method is demonstrated by testing some various examples.
similar resources
The combined reproducing kernel method and Taylor series for solving nonlinear Volterra-Fredholm integro-differential equations
In this letter, the numerical scheme of nonlinear Volterra-Fredholm integro-differential equations is proposed in a reproducing kernel Hilbert space (RKHS). The method is constructed based on the reproducing kernel properties in which the initial condition of the problem is satised. The nonlinear terms are replaced by its Taylor series. In this technique, the nonlinear Volterra-Fredholm integro...
full textthe combined reproducing kernel method and taylor series for solving nonlinear volterra-fredholm integro-differential equations
in this letter, the numerical scheme of nonlinear volterra-fredholm integro-differential equations is proposed in a reproducing kernel hilbert space (rkhs). the method is constructed based on the reproducing kernel properties in which the initial condition of the problem is satised. the nonlinear terms are replaced by its taylor series. in this technique, the nonlinear volterra-fredholm integr...
full textSolving Fredholm integro-differential equations using reproducing kernel Hilbert space method
In this study, the numerical solution of Fredholm integro–differential equation is discussed in a reproducing kernel Hilbert space. A reproducing kernel Hilbert space is constructed, in which the initial condition of the problem is satisfied. The exact solution u x ð Þ is represented in the form of series in the space W 2 2 ½a; b. In the mean time, the n-term approxima te solution u n ðxÞ is o...
full textA new reproducing kernel method for solving Volterra integro-dierential equations
This paper is concerned with a technique for solving Volterra integro-dierential equationsin the reproducing kernel Hilbert space. In contrast with the conventional reproducing kernelmethod, the Gram-Schmidt process is omitted here and satisfactory results are obtained.The analytical solution is represented in the form of series. An iterative method is given toobtain the...
full textReproducing Kernel Hilbert Space Method for Solving Fredholm Integro-differential Equations of Fractional Order
This paper presents a computational technique for solving linear and nonlinear Fredholm integro-differential equations of fractional order. In addition, examples that illustrate the pertinent features of this method are presented, and the results of the study are discussed. Results have revealed that the RKHSM yields efficiently a good approximation to the exact solution.
full textA New Approach for Solving Volterra Integral Equations Using The Reproducing Kernel Method
This paper is concerned with a technique for solving Volterra integral equations in the reproducing kernel Hilbert space. In contrast with the conventional reproducing kernel method, the Gram-Schmidt process is omitted here and satisfactory results are obtained.The analytical solution is represented in the form of series.An iterative method is given to obtain the approximate solution.The conver...
full textMy Resources
Journal title
volume 11 issue 2
pages 1- 14
publication date 2017-06-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023